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OBJECTIVE

Falls - often due to balance disorders - have a significant epidemiological burden [1]

Various sensory organs contribute to the incidence of falls including the vestibular
system

While various tools (such as computerized dynamic posturography) assessing
posture and balance exist,  they may be costly, inefficient and have limited
availability. Furthermore, few conventional methods have adequate testing

parameters to be useful in routine clinical practice [2-4]

Does artificial intelligence or machine learning (ML) enhance these testing
parameters?

PICO: For adult patients with vestibular pathology (P) undergoing quantitative balance
testing requiring whole-body motion analysis in conjunction with ML algorithms (I), what

are the test parameters (C/O) for the detection and/or diagnosis of disease?

Systematic search: MEDLINE, Cochrane (CENTRAL), Web of Science & Scopus
Manual search: Pubmed, Google Scholar, reference lists, grey literature
Screening: Three independent reviewers using Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [5]

Inclusion criteria: Adults patients with vestibular pathology undergoing body
motion analysis with ML augmentation
Exclusion criteria: Non-specific balance disorders, case reports, case series
(n<10), editorials, perspectives, proof of concept, reviews.

Intervention variables: hardware, data type, ML algorithms + etiology compared
Outcome variables: F1 score, sensitivity, specificity, accuracy, area-under the
curve, negative predictive value, positive predictive value

Data: Qualitative summaries including measures of central tendency. No formal
meta-analysis conducted given heterogeneity of study designs and data.

INTERVENTION AND OUTCOME VARIABLES

Figure 1. PRISMA flow diagram outlining the screening process
Figures 2 & 3. Risk-of-bias assessment using the Risk of Bias tool for Non-randomized

Studies (RoBANS) [6]
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ML algorithms such as support vector machines (SVMs) in conjunction with motion
analysis testing can produce excellent and reliable test parameters for detecting

vestibular disease and can subsequently enhance clinical efficiency

ML can not only enhance existing methods (eg. stabilometry), but use newer
methods (eg. inertial measurement units) and obtain more efficacious test

parameters than conventional methods

Emerging, cost-effective paradigms such as machine vision to quantify body sway
and pose should be explored

Limitations include small sample sizes (training/validating ML data considerations),
lack of randomization and uncontrolled confounders 
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