Introduction

Vestibular information is intuitively important for accurate navigation. Navigational abilities may be abnormal in patients with peripheral vestibular damage, but the literature on this topic is inconsistent and contradictory.

Objective:

To compare performance in virtual reality spatial navigation (VRSN) tasks in patients with bilateral vestibular loss (BVL) and normal control (NC) subjects.

Study Design: Cross sectional study

Setting: Academic medical center.

Methods

Subjects used a virtual reality headset to perform a "complete the triangle task" in a visually barren virtual environment in three conditions: (1) "dynamic," in which subjects walked in place on a 1-meter diameter circular platform and received proprioceptive, visual, and vestibular cues; (2) "stationary," in which subjects' heads were secured in a fixed position and rotation and translation occurred within the VR environment using an Xbox controller; and (3) "vestibular-only" in which subjects were seated in a rotary chair and rotated in the yaw plane with access only to vestibular and visual cues.

Results

Male BVL subjects (n=10) demonstrated lower accuracy and decreased precision in a dynamic navigation task compared to age- and sex-matched male NC subjects (U=74, p<0.05 and U=71,p <0.01, respectively). While BVL males were less precise in the dynamic task compared to the stationary task (p<0.05), NC males were comparatively more precise in the dynamic task (p<0.01). Female BVL and NC subjects performed similarly on both the dynamic and stationary tasks. Results from the "vestibular-only" condition are pending; 10 BVL and 10 NC subjects have undergone testing.

Conclusions

Patients with vestibular loss may perform more poorly on dynamic spatial navigation tasks compared to age-matched healthy subjects. Further research is needed to characterize the specific vestibular contributions to spatial navigation and to isolate potential differences between sexes.